

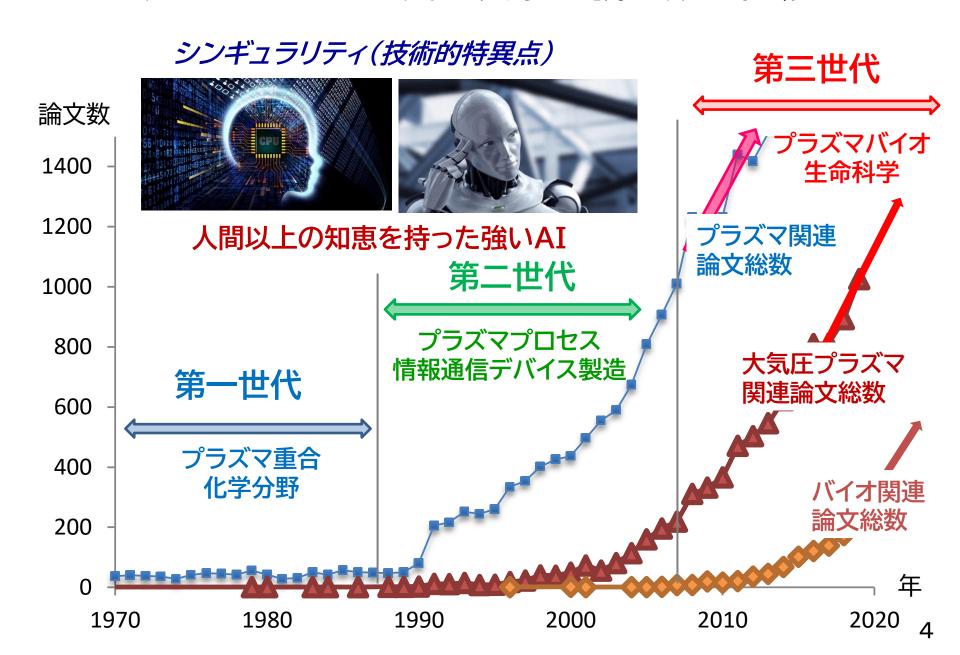
低温プラズマ科学が拓く 未来社会

堀勝

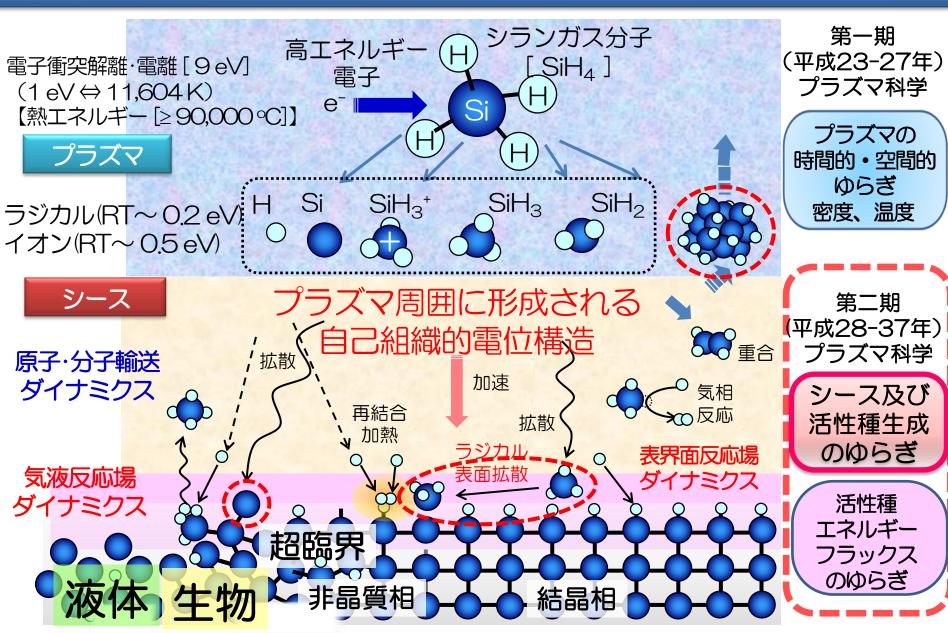
名古屋大学低温プラズマ科学研究センター(cLPS) 共同利用・共同研究拠点「低温プラズマ科学研究拠点」

設置 平成31(2019)年4月1日

プラズマ科学:宇宙の99.9%はプラズマ! ~ 宇宙を支えるエネルギー ~ 分子の生成 ビッグバン 電子、中性子、光 核融合 原子の生成 惑星の生成 産業化 生命科学 137 億年 前 星の誕生 低温プラズマが 6,000°C ~40°C 10,000°C 人類の活動を支えている 10⁸ 低温プラズマ 高温プラズマ (J/m^3) 核融合 気相 高圧 低圧 コネルギーを困 10°0 104 グロー放電 超臨界流体 液体 クラスター 正イオン 負イオン 10-4 ラジカル イオン 10⁰ 2 10^{11} 10⁵ 10^{2} 10^{4} 10¹ ガス温度(℃)


オーロラは、低温プラズマである。

大気を通して太陽と地球の協奏現象(低温プラズマ)を見ている!



低温プラズマは全産業で使用されている基幹科学技術

低温プラズマ応用に関する論文数の推移

低温プラズマの学理

新しい基礎科学:シース非平衡表界面物理化学反応場の科学

未来社会創造に向けたイノベーションを生むプラズマ科学

ナノデバイス

グリーン

ライフ

大規模集積回路 メモリー 情報通信デバイス 量子コンピュター IoTセンサー

燃料電池、太陽電池 CO。分解 水素生成

バイオデバイス 医療、農水産 感染パンデミック の防止

大気圧、液中プラズマ

超高精密,超高速 プロセス

Ⅱ世代

皿世代

I 世代

自己組織化

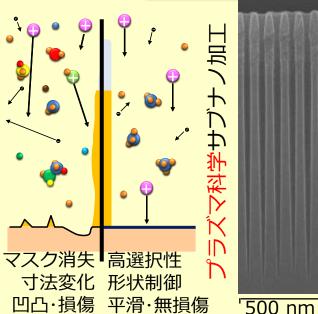
プログラムド プロセス

原子レベル制御

プラズマ科学

診断

生成制御 装置デザイン プロセスレシピ

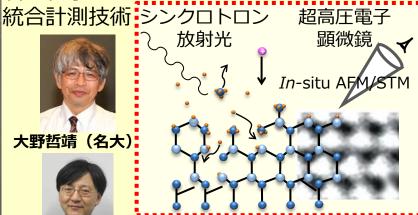

モデリング シミュレーション

AIを用いた「プラズマインフォマティクス」によるプロセス科学の構築

プラズマ材料デバイス科学

1ナノメーター加工への挑戦

シミュレーション



制御限界10nm

大野哲靖 (名大)

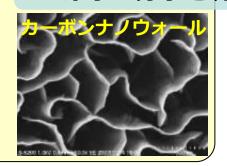
原子レベルその場分析+量子化学

浜口智志(阪大)

江利口浩二(京大)

豊田浩孝 (名大)の非平衡反応解析

電子物性

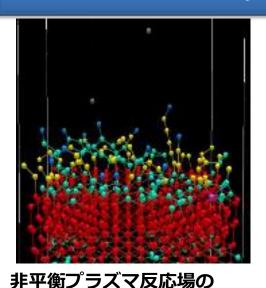

プラズマ科学に基づいた自律型制御システムの実現

固体物理学

勝(名大) 新物性をインテグ レーションしたデ バイスの創生

スケーリング理論を超えたデバイス

- 原子・分子を制御 - 複雑系デバイス



白谷正治(九大)

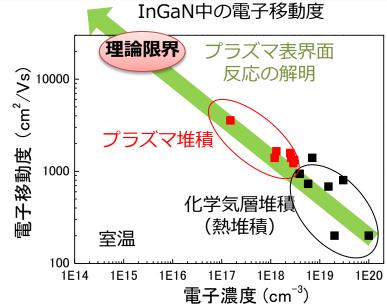
プラズマ科学に基づく ボンドエンジニアリング 理論確立

異種材料界面・三次元構造の'ゆらぎ'の制御理論体系の構築

プラズマ環境エネルギー科学

分子動力学シミュレーション 新却か熱プラブラに トス

寺嶋和夫 (東大)

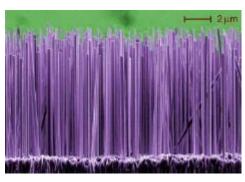


野崎智洋(東工大)

新規な熱プラズマによる 環境調和型プロセスの実現

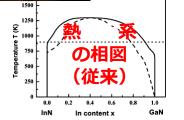
佐々木浩一 (北大)

渡辺隆行 (九大)



伊藤昌文 (名城大)

殺菌部材



天野浩 (名大)

ナノワイヤ構造 (自己組織化)

- 原子層単位での組成制御
- 非平衡混晶材料 (相図)
- 自己組織化構造

非平衡薄膜材料科学 (励起状態、励起物質)

プラズマ生命科学

生物医学 腫瘍治癒 腫瘍生物学

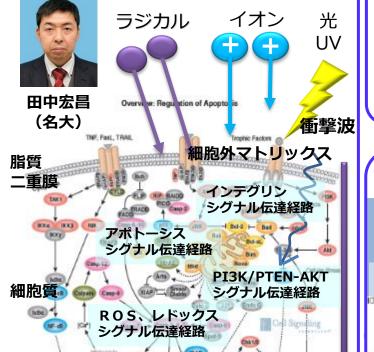
細胞の死滅と増殖

水野正明 (名大)

豊國伸哉 (名大)

がん細胞アポトーシス (死滅)

正常細胞の成長促進


未照射

卵巣がん治癒実証

(Appl. Phys. Lett. 100 (2012) 113702.)

分子細胞生物学

プラズマと細胞内シグナル 伝達経路との相互作用

グナル伝達経路

Cell shrinking

核膜

DNA

分子生物物理・構造生物学

』 DNA損傷修復シ

ATMUNTA - DS

雷磁界

生物機能分化学

植物・魚類成長促進

金子俊郎 (東北大)

恒常性の理解と強化

細胞外で行われる活動制御

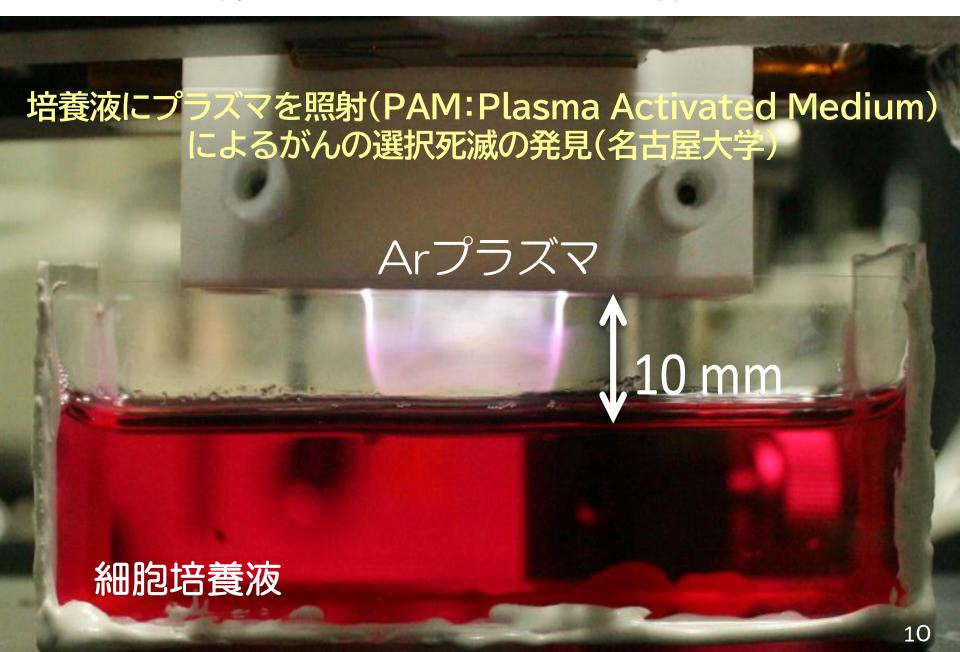
組織としての作用機序 臓器官としての作用機序

細胞間コミュニケーション

- ・免疫
- 細胞の輸送

たんぱく質間相互作用

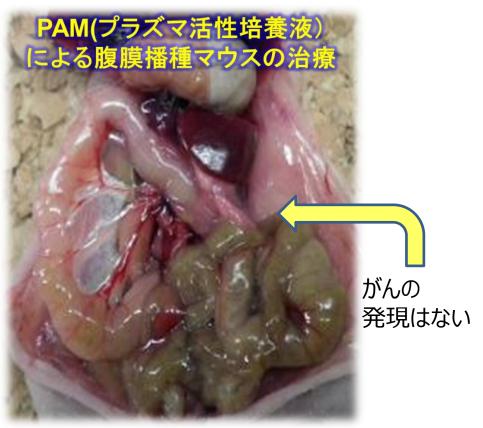
成長因子


たんぱく質の修飾

- ・構造の安定性
- ・輸送
 - 多くの生体分子が糖鎖 糖鎖たんぱく質
- シグナル伝達 ・糖脂質
- 細胞の増殖
- ·分化
- ・プロテオグリカン
- ・転写調節

糖鎖遺伝子

新たな科学領域の勃興:プラズマと液体との相互作用



未来医療へ道

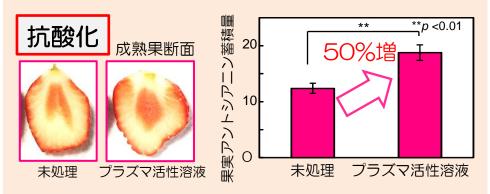
プラズマ活性培養液(Plasma Activated Medium: PAM) によって腹膜転移を抑制(卵巣がん)

(産婦人科:吉川史隆教授、脳外科:水野正明教授、眼科:寺崎浩子教授)

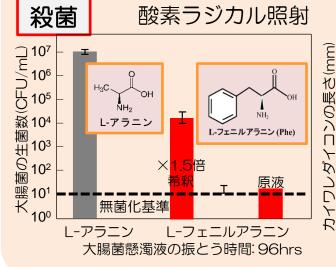
名古屋大学:プラズマ・医科学チーム 卵巣がん,胃がん、膵臓がん,乳がん,子宮頸がん,脳腫瘍,メラノーマ 加齢黄斑変性、未分化iPS細胞の選択的除去などにも効果 ₁

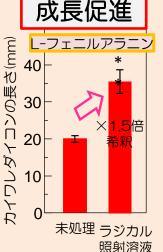
プラズマ農業 ~食糧危機を解決~ 幸田町(愛知県)・名古屋大学プラズマファームの設立

プラズマ直接照射を行った果実では対照 区と比較して約25%増加。プラズマ活性 点滴溶液処理を行ったイチゴ果実では、 52%増加。


抗酸化物質を蓄積した高付加価値の果実 を栽培に世界で初めて成功

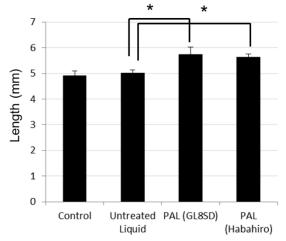
アンチエージング、健康長寿を実現する 未来型農業への展開


ICT+プラズマによる 第6次産業を目指す!


機能イチゴの創成

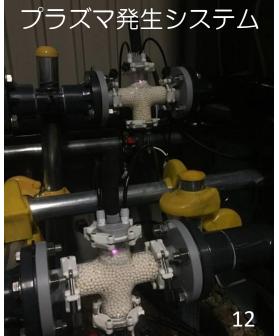
イチゴ苗へのプラズマ活性点滴 (PAL)処理

成長促進と殺菌の両立



プラズマ陸上養殖

~マイクロプラスティック、重金属汚染のない良質たんぱく質の魚~ **名古屋大学・豊根村(愛知県)プラズマアクアカルチャー**



チョウザメの陸上養殖を推進

プラズマバイオコンソーシアム(平成30年7月創設)

~本質の理解と新学理の構築~

基礎

大学

大学

(バイオサイエンス・計測・シミュレーション)

自然科学研究機構

(NINS)

新分野創成センター (CNSI) プラズマバイオ 研究分野

核融合科学研究所 (NIFS)

• 基礎生物学研究所 (NIBB)

・生理学研究所 (NIPS)

• 分子科学研究所 (IMS)

名古屋大学 (NU)

低温フラズマ科学 研究センタ・

動物系

(医療・水産)

東北大学

非平衡プラズマ 学際研究センタ

九州大学 (KU)

プラズマナノ界面 工学センター

植物系

(農業)

大学

14

★一体での共同研究運営

·統一窓口·管理

(NINS)

社会や国民から の大きな期待

低温宇宙におけるサステーナブルな地球の実現

来るべき21世紀後半の未来社会の実現

SDGs を牽引

エネルギー問題 **谷** 田問題 食料問題 環境問題 緊急な

健康問題

交通問題

低温プラズマ技術に よる抜本的解決

次代「エネルギー、通信、交通、 衣食住・医療・介護」産業の創出

水素化社会 ユビキタス社会 先進的自動車社会 豊かな社会 安全な社会 超寿命化社会

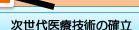
最先端デバイス・システムの創成

・次世代車載GaNパワーデバイス

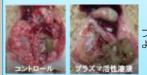
課題!!

- 超低消費電力ULSI、三次元化 • インテレクチュアルグラス
- 低CO₂クリーンエネルギー源

スマートモビリティー 革新製造装置


革新的環境改善技術の確立

- ・ 住宅環境の最適化 (特に在宅医療介護者の感染症対策)
- 世界的水不足の解消
- · 土壌改良 · 除染

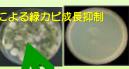


2023 世界的食糧危機への挑戦

- 高品質・高付加価値作物の 安定的生産 • 世界的食糧不足の解消
 - フィールドでの プラズマ処理によって 収穫した種子や果実の 収量増加および 品質の向上

- ・ 次世代プラズマがん医療の確立
- ・プラズマによる低侵襲止血の実現 ・次世代プラズマ再生医療の確立

プラズマ活性溶液に よる腹膜播種治療


次代プラズマナノプロセスの創出

- 超微細ナノ加工技術、3次元化構造
- ・革新的カーボンナノ材料創出技術
- 超高アスペクト比高速ガラス加工
- プラズマ活性異種材料接合

ナノカーボン

• 十壌浄化技術

カビ(環境)の成長制御技術 ・水を使わない洗浄技術

(トイレ、キッチン、風呂等)

次代プラズマ制御環境技術の創出

次代プラズマ促進農水産技術の創出

農水産物 (植物, 魚類, 微生物等) の 成長制御技術

様々な生物種に対して定量的なプラズマ処理により その成長(促進/抑制)制御を可能とする

プラズマ医療科学の創成

プラズマ照射およびプラズマ活性 溶液によるがん細胞の選択的殺傷効果

・プラズマ照射による低侵襲止血効果

プラズマによるがん細胞 の選択的殺傷効果の発見

マ・農水産

プラズマ・医学(医療)

統合領域

プラズマ・環境制御

生命農学

医学•医療

融合対象領域

丁学•理学

環境社会学

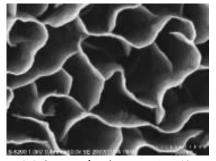
非平衡反応場科学·励起物質化学

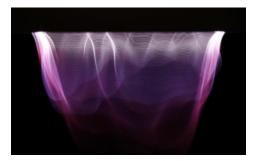
低温プラズマ科学 (コア領域)

プラズマ制御技術

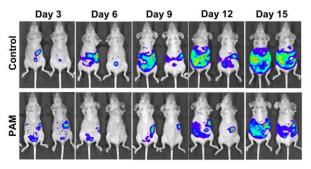
名古屋大学プラズマ科学プラットフォーム (NIC・4階2015年設立)

低温プラズマ科学研究センター、工学研究科、医学研究科、附属病院


プラズマ励起反応場の新理論を基にSociety5.0を推進

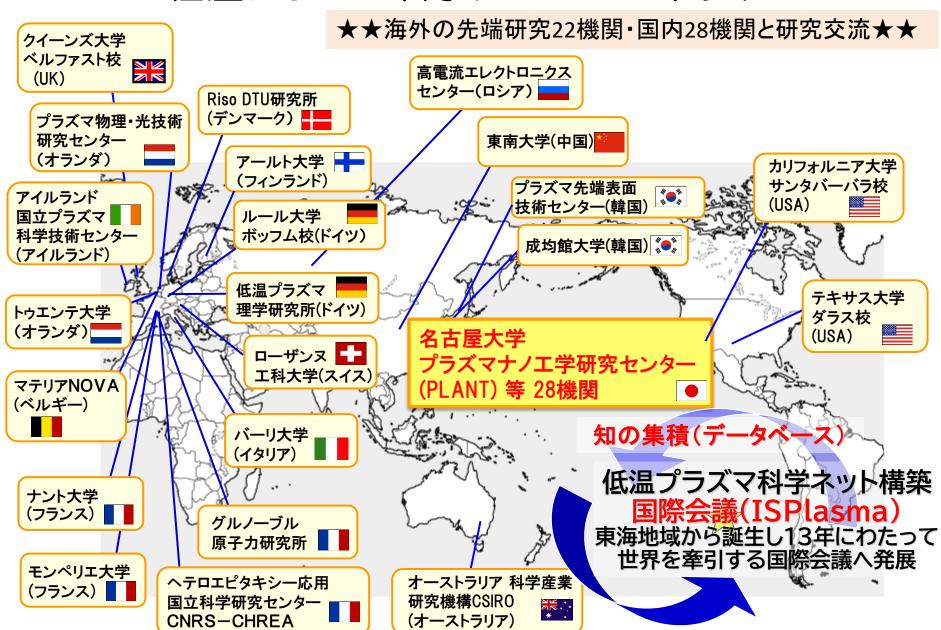

名古屋大学低温プラズマ科学研究センター 我が国初の文部科学省認定の共同利用・共同研究拠点

第24期学術の大型研究計画に関するマスタープラン(マスタープラン2020)


重点大型研究計画(計画No.23) http://www.scj.go.jp/ja/info/kohyo/kohyo-24-t286-1.html

材料・デバイス科学

環境・エネルギー科学


生命科学

世界最高峰の未来科学技術の開拓

1フロア (2000m²)に最先端プラズマ・計測装置160台を設置して共同利用を推進

低温プラズマ科学グローバルネット

2019年度低温プラズマ科学研究センター 共同利用・共同研究採択先一覧

知のチカラ

共共拠点29機関との連携企業40社との連携を

保有する知的財産(出願565、登録171以上):

公的機関での特許評価第一位。

特許収入があり、プラズマを機軸にした大学発のベン

チャー企業5社等が独創的製品を開発して事業を展開

プラズマバイオコンソージアム

核融合科学研究所 • 自然科学研究機構

東北大学大学院工学研究科

産業技術総合研究所

- 電子光技術研究部門
- ・太陽光発電研究センター

東京大学新領域創成科学研究科 日本大学生産工学部

東京工業大学工学院機械系 首都大学東京システムデザイン研究科 東京都市大学工学部 東京工科大学工学部

静岡大学大学院総合科学技術研究科

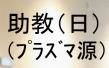
豊田工業大学工学部 中部大学工学部 名城大学理工学部 名古屋市立大学芸術工学部 名古屋大学大学院創薬科学研究科 愛知工業大学工学部 中部大学応用生物学部

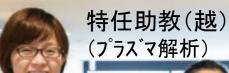
岐阜大学工学部

富山大学大学院医学薬学研究部

金沢大学電子情報通信学系

京都大学大学院工学研究科


大阪市立大学工学研究科 大阪府立大学研究推進機構 愛媛大学大学院理工学研究科


九州大学プラズマナノ界面工学センター

佐世保工業高等専門学校電気電子工学科19

新たな学際領域:プラズマ科学のグローバル教育が最も重要

特任講師(日) (プラズマ医療)

特任講師(蘭) (プラズマプロセス)

先駆的な知的価値の創造

次世代のイノベーション創出を牽引する

グローバルで柔軟な若い感性